Format

Send to

Choose Destination
Angew Chem Int Ed Engl. 2015 Aug 17;54(34):9898-902. doi: 10.1002/anie.201504617. Epub 2015 Jul 1.

A Native Ternary Complex Trapped in a Crystal Reveals the Catalytic Mechanism of a Retaining Glycosyltransferase.

Author information

1
Unidad de Biofísica, Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia (Spain).
2
IKERBASQUE, 48013 Bilbao (Spain).
3
IBB and Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain).
4
Laboratorio de Síntesis Asimétrica, Departamento de Síntesis y Estructura de Biomoléculas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, 50009 Zaragoza, Aragón (Spain).
5
IBB and Joint BSC-CRG-IRB Program in Computational Biology, IRB Barcelona, 08028 Barcelona (Spain).
6
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona (Spain).
7
Institut de Biotecnologia i de Biomedicina (IBB) (Spain).
8
Unidad de Biofísica, Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Bizkaia (Spain). mrcguerin@gmail.com.
9
IKERBASQUE, 48013 Bilbao (Spain). mrcguerin@gmail.com.

Abstract

Glycosyltransferases (GTs) comprise a prominent family of enzymes that play critical roles in a variety of cellular processes, including cell signaling, cell development, and host-pathogen interactions. Glycosyl transfer can proceed with either inversion or retention of the anomeric configuration with respect to the reaction substrates and products. The elucidation of the catalytic mechanism of retaining GTs remains a major challenge. A native ternary complex of a GT in a productive mode for catalysis is reported, that of the retaining glucosyl-3-phosphoglycerate synthase GpgS from M. tuberculosis in the presence of the sugar donor UDP-Glc, the acceptor substrate phosphoglycerate, and the divalent cation cofactor. Through a combination of structural, chemical, enzymatic, molecular dynamics, and quantum-mechanics/molecular-mechanics (QM/MM) calculations, the catalytic mechanism was unraveled, thereby providing a strong experimental support for a front-side substrate-assisted SN i-type reaction.

KEYWORDS:

enzyme catalysis; enzymes; glycosyltransferases; reaction mechanisms; structure elucidation

PMID:
26136334
DOI:
10.1002/anie.201504617
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center