Send to

Choose Destination
J Anim Sci. 2015 Jun;93(6):3144-51. doi: 10.2527/jas.2015-8924.

Performance and carcass characteristics of commercial feedlot cattle from a study of vaccine and direct-fed microbial effects on Escherichia col O157:H7 fecal shedding.


The objective of this study was to quantify cattle performance and carcass characteristics associated with administration of a siderophore receptor and porin proteins-based vaccine (VAC) and a direct-fed microbial (DFM), which were originally evaluated for their impact on O157:H7 fecal shedding in a commercial feedlot population. Cattle (P = 17,148) were randomly allocated into 40 pens grouped by allocation dates into 10 complete blocks; pens within block were randomly allocated to control, VAC, DFM, or VAC + DFM treatment groups in a 2 × 2 factorial design. The DFM (Bovamine) was fed daily at the labeled dose of 10 cfu/animal of Lactobacillus acidophilus for the duration of the intervention period (mean = 86.6 d). The VAC cattle were vaccinated on Days 0 and 21 whereas unvaccinated cattle were not given a placebo or rehandled on Day 21. Data were analyzed using general and generalized linear mixed models that accounted for the study design. Main effects of DFM and VAC are reported as there were no significant treatment interactions for any of the outcomes evaluated. Vaccinated cattle had lower total weight gain (P < 0.01), ADG (P = 0.03), and cumulative DMI during the intervention period (P < 0.01) compared with unvaccinated cattle, whereas the DFM increased total weight gain (P = 0.03) and G:F (P = 0.05) during the intervention period. Daily DMI was decreased (P < 0.01) in vaccinated pens compared with unvaccinated pens during a 5-d period immediately following revaccination. After the intervention period was completed, cattle were sorted following the standard operating procedure for the feedlot and all cattle were fed the DFM from that point until harvest. Each steer was individually identified through harvest. At harvest, vaccinated cattle had more total days on feed (P < 0.01) with a larger HCW (P = 0.01) than nonvaccinated cattle, whereas cattle not fed the DFM during the intervention period had a significantly larger HCW (P < 0.01) than those fed the DFM during the intervention period. We conclude that the use of these DFM and vaccine products have differential and independent effects on cattle performance and carcass characteristics in a commercial feedlot setting. Although the magnitude of these effects may vary among production systems, a more comprehensive understanding of the potential production costs of preharvest food safety pathogen control programs is essential if such programs are to be fully adopted in the industry.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center