Send to

Choose Destination
Front Aging Neurosci. 2015 Jun 10;7:101. doi: 10.3389/fnagi.2015.00101. eCollection 2015.

Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction.

Author information

Molecular Medicine Program, Institute of Research in Biomedicine (IRB Barcelona) Barcelona, Spain ; Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain.
CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III Barcelona, Spain ; Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona, Spain.


Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.


food intake; mitochondrial fission; mitochondrial fusion; mitofusin 2; neurodegenerative diseases; obesity

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center