Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park

Appl Environ Microbiol. 2015 Sep 1;81(17):5907-16. doi: 10.1128/AEM.01095-15. Epub 2015 Jun 19.

Abstract

Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arsenates / metabolism*
  • Bacterial Proteins / genetics
  • Base Composition
  • Geologic Sediments / chemistry
  • Geologic Sediments / microbiology*
  • Metagenome
  • Molecular Sequence Data
  • Parks, Recreational
  • Phylogeny
  • Pyrobaculum / classification
  • Pyrobaculum / genetics
  • Pyrobaculum / isolation & purification*
  • Pyrobaculum / metabolism*
  • Sulfur / metabolism*

Substances

  • Arsenates
  • Bacterial Proteins
  • Sulfur
  • arsenic acid

Associated data

  • SRA/PRJNA258558