Format

Send to

Choose Destination
Genomics Proteomics Bioinformatics. 2015 Apr;13(2):91-102. doi: 10.1016/j.gpb.2015.03.006. Epub 2015 Jun 17.

Regulation of the PI3K/AKT Pathway and Fuel Utilization During Primate Torpor in the Gray Mouse Lemur, Microcebus murinus.

Author information

1
Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Surgery & Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School, Charlestown, MA 02129, USA.
2
Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada.
3
Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada.
4
Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
5
UMR 7179 Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy 91800, France.
6
Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada. Electronic address: kenneth_storey@carleton.ca.

Abstract

Gray mouse lemurs (Microcebus murinus) from Madagascar present an excellent model for studies of torpor regulation in a primate species. In the present study, we analyzed the response of the insulin signaling pathway as well as controls on carbohydrate sparing in six different tissues of torpid versus aroused gray mouse lemurs. We found that the relative level of phospho-insulin receptor substrate (IRS-1) was significantly increased in muscle, whereas the level of phospho-insulin receptor (IR) was decreased in white adipose tissue (WAT) of torpid animals, both suggesting an inhibition of insulin/insulin-like growth factor-1 (IGF-1) signaling during torpor in these tissues. By contrast, the level of phospho-IR was increased in the liver. Interestingly, muscle, WAT, and liver occupy central roles in whole body homeostasis and each displays regulatory controls operating at the plasma membrane. Changes in other tissues included an increase in phospho-glycogen synthase kinase 3α (GSK3α) and decrease in phospho-ribosomal protein S6 (RPS6) in the heart, and a decrease in phospho-mammalian target of rapamycin (mTOR) in the kidney. Pyruvate dehydrogenase (PDH) that gates carbohydrate entry into mitochondria is inhibited via phosphorylation by pyruvate dehydrogenase kinase (e.g., PDK4). In the skeletal muscle, the protein expression of PDK4 and phosphorylated PDH at Ser 300 was increased, suggesting inhibition during torpor. In contrast, there were no changes in levels of PDH expression and phosphorylation in other tissues comparing torpid and aroused animals. Information gained from these studies highlight the molecular controls that help to regulate metabolic rate depression and balance energetics during primate torpor.

KEYWORDS:

GSK3; Insulin signaling pathway; Metabolic rate depression; PI3K/AKT; Pyruvate dehydrogenase; mTOR

PMID:
26092184
PMCID:
PMC4511781
DOI:
10.1016/j.gpb.2015.03.006
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center