Format

Send to

Choose Destination
Nat Commun. 2015 Jun 12;6:7331. doi: 10.1038/ncomms8331.

Molecular snapshots of the Pex1/6 AAA+ complex in action.

Author information

1
Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, Munich 81377, Germany.
2
Institute of Biochemistry and Pathobiochemistry, Department of Systems Biochemistry, Faculty of Medicine, Ruhr-Universität Bochum, Bochum 44801, Germany.

Abstract

The peroxisomal proteins Pex1 and Pex6 form a heterohexameric type II AAA+ ATPase complex, which fuels essential protein transport across peroxisomal membranes. Mutations in either ATPase in humans can lead to severe peroxisomal disorders and early death. We present an extensive structural and biochemical analysis of the yeast Pex1/6 complex. The heterohexamer forms a trimer of Pex1/6 dimers with a triangular geometry that is atypical for AAA+ complexes. While the C-terminal nucleotide-binding domains (D2) of Pex6 constitute the main ATPase activity of the complex, both D2 harbour essential substrate-binding motifs. ATP hydrolysis results in a pumping motion of the complex, suggesting that Pex1/6 function involves substrate translocation through its central channel. Mutation of the Walker B motif in one D2 domain leads to ATP hydrolysis in the neighbouring domain, giving structural insights into inter-domain communication of these unique heterohexameric AAA+ assemblies.

PMID:
26066397
PMCID:
PMC4490564
DOI:
10.1038/ncomms8331
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center