Send to

Choose Destination
Scand J Med Sci Sports. 2016 Jun;26(6):630-7. doi: 10.1111/sms.12498. Epub 2015 Jun 9.

Higher rate of fat oxidation during rowing compared with cycling ergometer exercise across a range of exercise intensities.

Author information

Institute for Sport & Health, University College Dublin, Dublin, Ireland.
Institute of Food & Health, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland.
School of Health & Human Performance, Dublin City University, Dublin, Ireland.
Exercise and Health Sciences Division, Central Michigan University, Mount Pleasant, Michigan, USA.
Centre for Preventive Medicine, Dublin City University, Dublin 9, Ireland.


The relative contribution of carbohydrate and fat oxidation to energy expenditure during exercise is dependent on variables including exercise intensity, mode, and recruited muscle mass. This study investigated patterns of substrate utilization during two non-weightbearing exercise modalities, namely cycling and rowing. Thirteen young, moderately trained males performed a continuous incremental (3-min stages) exercise test to exhaustion on separate occasions on an electronically braked cycle (CYC) ergometer and an air-braked rowing (ROW) ergometer, respectively. On two further occasions, participants performed a 20-min steady-state exercise bout at ∼50%VO2peak on the respective modalities. Despite similar oxygen consumption, rates of fat oxidation (FATox ) were ∼45% higher during ROW compared with CYC (P < 0.05) across a range of power output increments. The crossover point for substrate utilization occurred at a higher relative exercise intensity for ROW than CYC (57.8 ± 2.1 vs 42.1 ± 3.6%VO2peak , P < 0.05). During steady-state submaximal exercise, the higher FATox during ROW compared with CYC was maintained (P < 0.05), but absolute FATox were 42% (CYC) and 28% (ROW) lower than during incremental exercise. FATox is higher during ROW compared with CYC exercise across a range of exercise intensities matched for energy expenditure, and is likely as a consequence of larger muscle mass recruited during ROW.


Exercise modality; aerobic; energy expenditure; fuel utilization; non-weightbearing

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center