Format

Send to

Choose Destination
Environ Toxicol Chem. 2015 Nov;34(11):2644-59. doi: 10.1002/etc.3103. Epub 2015 Oct 6.

Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study.

Author information

1
Department of Environmental Sciences, Informatics, and Statistics, University Ca' Foscari Venice, Venice, Italy.

Abstract

Societal concerns about the environmental risks of engineered nanomaterials (ENMs) have recently increased, but nano-ecological risk assessments are constrained by significant gaps in basic information on long-term effects and exposures, for example. An approach to the ecological risk assessment of ENMs is proposed that can operate in the context of high uncertainty. This approach further develops species sensitivity weighted distribution (SSWD) by including 3 weighting criteria (species relevance, trophic level abundance, and nanotoxicity data quality) to address nano-specific needs (n-SSWD). The application of n-SSWD is illustrated for nanoscale titanium dioxide (n-TiO2 ), which is available in different crystal forms; it was selected because of its widespread use in consumer products (e.g., cosmetics) and the ample availability of data from ecotoxicological studies in the literature (including endpoints for algae, invertebrates, bacteria, and vertebrates in freshwater, saltwater, and terrestrial compartments). The n-SSWD application resulted in estimation of environmental quality criteria (hazard concentration affecting 5% and 50% of the species) and ecological risk (potentially affected fraction of species), which were then compared with similar results obtained by applying the traditional species sensitivity distribution (SSD) approach to the same dataset. The n-SSWDs were also built for specific trophic levels (e.g., primary producers) and taxonomic groups (e.g., algae), which helped to identify the most sensitive organisms. These results showd that n-SSWD is a valuable risk tool, although further testing is suggested.

KEYWORDS:

Data quality; Ecological risk assessment; Nanomaterials; Species sensitivity distribution; Titanium dioxide

PMID:
26058704
DOI:
10.1002/etc.3103
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center