Format

Send to

Choose Destination
Cell Stem Cell. 2015 Jun 4;16(6):613-25. doi: 10.1016/j.stem.2015.05.009.

Epigenetic Control of Stem Cell Potential during Homeostasis, Aging, and Disease.

Author information

1
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA.
2
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA. Electronic address: derrick.rossi@childrens.harvard.edu.

Abstract

Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.

PMID:
26046761
PMCID:
PMC4469343
DOI:
10.1016/j.stem.2015.05.009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center