Send to

Choose Destination
J Nucl Med. 2015 Aug;56(8):1199-205. doi: 10.2967/jnumed.114.152405. Epub 2015 Jun 4.

Relative 11C-PiB Delivery as a Proxy of Relative CBF: Quantitative Evaluation Using Single-Session 15O-Water and 11C-PiB PET.

Author information

Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
Department of Biostatistics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and.
Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania


The primary goal of this study was to assess the suitability of (11)C-Pittsburgh compound B ((11)C-PiB) blood-brain barrier delivery (K1) and relative delivery (R1) parameters as surrogate indices of cerebral blood flow (CBF), with a secondary goal of directly examining the extent to which simplified uptake measures of (11)C-PiB retention (amyloid-β load) may be influenced by CBF, in a cohort of controls and patients with mild cognitive impairment (MCI) and Alzheimer disease (AD).


Nineteen participants (6 controls, 5 AD, 8 MCI) underwent MR imaging, (15)O-water PET, and (11)C-PiB PET in a single session. Fourteen regions of interest (including cerebellar reference region) were defined on MR imaging and applied to dynamic coregistered PET to generate time-activity curves. Multiple analysis approaches provided regional (15)O-water and (11)C-PiB measures of delivery and (11)C-PiB retention that included compartmental modeling distribution volume ratio (DVR), arterial- and reference-based Logan DVR, simplified reference tissue modeling 2 (SRTM2) DVR, and standardized uptake value ratios. Spearman correlation was performed among delivery measures (i.e., (15)O-water K1 and (11)C-PiB K1, relative K1 normalized to cerebellum [Rel-K1-Water and Rel-K1-PiB], and (11)C-PiB SRTM2-R1) and between delivery measures and (11)C-PiB retention, using the Bonferroni method for multiple-comparison correction.


Primary analysis showed positive correlations (ρ ≈0.2-0.5) between (15)O-water K1 and (11)C-PiB K1 that did not survive Bonferroni adjustment. Significant positive correlations were found between Rel-K1-Water and Rel-K1-PiB and between Rel-K1-Water and (11)C-PiB SRTM2-R1 (ρ ≈0.5-0.8, P < 0.0036) across primary cortical regions. Secondary analysis showed few significant correlations between (11)C-PiB retention and relative (11)C-PiB delivery measures (but not (15)O-water delivery measures) in primary cortical areas that arose only after accounting for cerebrospinal fluid dilution.


(11)C-PiB SRTM2-R1 is highly correlated with regional relative CBF, as measured by (15)O-water K1 normalized to cerebellum, and cross-sectional (11)C-PiB retention did not strongly depend on CBF across primary cortical regions. These results provide further support for potential dual-imaging assessments of regional brain status (i.e., amyloid-β load and relative CBF) through dynamic (11)C-PiB imaging.


Alzheimer’s disease; PiB PET; amyloid; blood flow; kinetic modeling

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center