Format

Send to

Choose Destination
PLoS One. 2015 Jun 3;10(6):e0127561. doi: 10.1371/journal.pone.0127561. eCollection 2015.

Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model.

Author information

1
Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil.
2
Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
3
Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil.
4
Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Centro de Ciências e Saúde, Bloco J, Ilha do Fundão, Rio de Janeiro, Brasil.

Abstract

Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.

PMID:
26039243
PMCID:
PMC4454438
DOI:
10.1371/journal.pone.0127561
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center