Send to

Choose Destination
Springerplus. 2014 May 20;3:257. doi: 10.1186/2193-1801-3-257. eCollection 2014.

The ClpS-like N-domain is essential for the functioning of Ubr11, an N-recognin in Schizosaccharomyces pombe.

Author information

Center for Gene Science, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527 Japan.


Several Ubr ubiquitin ligases recognize the N-terminal amino acid of substrate proteins and promote their degradation via the Arg/N-end rule pathway. The primary destabilizing N-terminal amino acids in yeast are classified into type 1 (Arg, Lys, and His) and type 2 (Phe, Trp, Tyr, Leu, Ile, and Met-Ф) residues. The type 1 and type 2 residues bind to the UBR box and the ClpS/N-domain, respectively, in canonical Ubr ubiquitin ligases that act as N-recognins. In this study, the requirement for type 1 and type 2 amino acid recognition by Schizosaccharomyces pombe Ubr11 was examined in vivo. Consistent with the results of previous studies, the ubr11∆ null mutant was found to be defective in oligopeptide uptake and resistant to ergosterol synthesis inhibitors. Furthermore, the ubr11∆ mutant was also less sensitive to some protein synthesis inhibitors. A ubr11 ClpS/N-domain mutant, which retained ubiquitin ligase activity but could not recognize type 2 amino acids, phenocopied all known defects of the ubr11∆ mutant. However, the recognition of type 1 residues by Ubr11 was not required for its functioning, and no severe physiological abnormalities were observed in a ubr11 mutant defective in the recognition of type 1 residues. These results reinforce the fundamental importance of the ClpS/N-domain for the functioning of the N-recognin, Ubr11.


N-end rule pathway; N-recognin; Oligopeptide transporter; Ubiquitin ligase; Ubr protein; Yeast

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center