Format

Send to

Choose Destination
Free Radic Biol Med. 2015 Sep;86:191-9. doi: 10.1016/j.freeradbiomed.2015.05.029. Epub 2015 May 29.

Carbon monoxide modulates cytochrome oxidase activity and oxidative stress in the developing murine brain during isoflurane exposure.

Author information

1
Division of Anesthesiology and Pain Medicine, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences.
2
Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 622W. 168th Street, New York, NY 10032, USA.
3
Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 622W. 168th Street, New York, NY 10032, USA. Electronic address: rl2740@cumc.columbia.edu.

Abstract

Commonly used anesthetics induce widespread neuronal degeneration in the developing mammalian brain via the oxidative-stress-associated mitochondrial apoptosis pathway. Dysregulation of cytochrome oxidase (CcOX), the terminal oxidase of the electron transport chain, can result in reactive oxygen species (ROS) formation. Isoflurane has previously been shown to activate this enzyme. Carbon monoxide (CO), as a modulator of CcOX, is of interest because infants and children are routinely exposed to CO during low-flow anesthesia. We have recently demonstrated that low concentrations of CO limit and prevent isoflurane-induced neurotoxicity in the forebrains of newborn mice in a dose-dependent manner. However, the effect of CO on CcOX in the context of anesthetic-induced oxidative stress is unknown. Seven-day-old male CD-1 mice underwent 1h exposure to 0 (air), 5, or 100ppm CO in air with or without isoflurane. Exposure to isoflurane or CO independently increased CcOX kinetic activity and increased ROS within forebrain mitochondria. However, exposure to CO combined with isoflurane paradoxically limited CcOX activation and oxidative stress. There were no changes seen in steady-state levels of CcOX I protein, indicating post-translational modification of CcOX as an etiology for changes in enzyme activity. CO exposure led to differential effects on CcOX subunit I tyrosine phosphorylation depending on concentration, while combined exposure to isoflurane with CO markedly increased the enzyme phosphorylation state. Phosphorylation of tyrosine 304 of CcOX subunit I has been shown to result in strong enzyme inhibition, and the relative reduction in CcOX kinetics following exposure to CO combined with isoflurane may have been due, in part, to such phosphorylation. Taken together, the data suggest that CO modulates CcOX in the developing brain during isoflurane exposure, thereby limiting oxidative stress. These CO-mediated effects could have implications for the development of low-flow anesthesia in infants and children to prevent anesthesia-induced oxidative stress.

KEYWORDS:

Anesthesia; Brain; Carbon monoxide; Cytochrome oxidase; Development; Isoflurane; Neurotoxicity; Oxidative stress; Phosphorylation; Reactive oxygen species

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center