Format

Send to

Choose Destination
See comment in PubMed Commons below
Expert Opin Biol Ther. 2015;15(8):1155-72. doi: 10.1517/14712598.2015.1051527. Epub 2015 Jun 1.

Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions.

Author information

1
Cornell University, Department of Biomedical Engineering , Ithaca, NY , USA jtb47@cornell.edu.

Abstract

INTRODUCTION:

Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration.

AREAS COVERED:

This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering.

EXPERT OPINION:

Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.

KEYWORDS:

3D tissue printing; biomechanics; material heterogeneity; stem cells

PMID:
26027436
PMCID:
PMC4883659
DOI:
10.1517/14712598.2015.1051527
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis Icon for PubMed Central
    Loading ...
    Support Center