Format

Send to

Choose Destination
Nat Mater. 2015 Aug;14(8):796-800. doi: 10.1038/nmat4295. Epub 2015 May 25.

Symmetry of charge order in cuprates.

Author information

1
1] Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada [2] Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
2
Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada.
3
1] Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada [2] Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany [4] Quantum Materials Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.
4
1] Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada [2] Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.
5
1] Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany [2] Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Straße 15, 12489 Berlin, Germany.
6
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.
7
Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1, Canada.
8
Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany.

Abstract

Charge-ordered ground states permeate the phenomenology of 3d-based transition metal oxides, and more generally represent a distinctive hallmark of strongly correlated states of matter. The recent discovery of charge order in various cuprate families has fuelled new interest into the role played by this incipient broken symmetry within the complex phase diagram of high-T(c) superconductors. Here, we use resonant X-ray scattering to resolve the main characteristics of the charge-modulated state in two cuprate families: Bi2Sr(2-x)La(x)CuO(6+δ) (Bi2201) and YBa2Cu3O(6+y) (YBCO). We detect no signatures of spatial modulations along the nodal direction in Bi2201, thus clarifying the inter-unit-cell momentum structure of charge order. We also resolve the intra-unit-cell symmetry of the charge-ordered state, which is revealed to be best represented by a bond order with modulated charges on the O-2p orbitals and a prominent d-wave character. These results provide insights into the origin and microscopic description of charge order in cuprates, and its interplay with superconductivity.

PMID:
26006005
DOI:
10.1038/nmat4295

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center