Format

Send to

Choose Destination
Eur J Pharmacol. 2016 Aug 15;785:2-9. doi: 10.1016/j.ejphar.2015.03.091. Epub 2015 May 20.

Omega-3 fatty acids, lipid rafts, and T cell signaling.

Author information

1
Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA.
2
Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M University System Health Science Center, College Station, TX, USA.
3
Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA; Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA; Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M University System Health Science Center, College Station, TX, USA. Electronic address: r-chapkin@tamu.edu.

Abstract

n-3 polyunsaturated fatty acids (PUFA) have been shown in many clinical studies to attenuate inflammatory responses. Although inflammatory responses are orchestrated by a wide spectrum of cells, CD4(+) T cells play an important role in the etiology of many chronic inflammatory diseases such as inflammatory bowel disease and obesity. In light of recent concerns over the safety profiles of non-steroidal anti-inflammatory drugs (NSAIDs), alternatives such as bioactive nutraceuticals are becoming more attractive. In order for these agents to be accepted into mainstream medicine, however, the mechanisms by which nutraceuticals such as n-3 PUFA exert their anti-inflammatory effects must be fully elucidated. Lipid rafts are nanoscale, dynamic domains in the plasma membrane that are formed through favorable lipid-lipid (cholesterol, sphingolipids, and saturated fatty acids) and lipid-protein (membrane-actin cytoskeleton) interactions. These domains optimize the clustering of signaling proteins at the membrane to facilitate efficient cell signaling which is required for CD4(+) T cell activation and differentiation. This review summarizes novel emerging data documenting the ability of n-3 PUFA to perturb membrane-cytoskeletal structure and function in CD4(+) T cells. An understanding of these underlying mechanisms will provide a rationale for the use of n-3 PUFA in the treatment of chronic inflammation.

KEYWORDS:

Lipid rafts; Omega-3 fatty acids; T cell activation; T cell differentiation

PMID:
26001374
PMCID:
PMC4654711
DOI:
10.1016/j.ejphar.2015.03.091
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center