Format

Send to

Choose Destination
Microbiology. 2015 Aug;161(8):1648-58. doi: 10.1099/mic.0.000116. Epub 2015 May 21.

Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.

Author information

1
Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.

Abstract

Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.

PMID:
25998263
PMCID:
PMC4681041
DOI:
10.1099/mic.0.000116
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Ingenta plc Icon for PubMed Central
Loading ...
Support Center