Format

Send to

Choose Destination
Cell Signal. 2015 Sep;27(9):1873-81. doi: 10.1016/j.cellsig.2015.05.003. Epub 2015 May 14.

Apolipoprotein a1 increases mitochondrial biogenesis through AMP-activated protein kinase.

Author information

1
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea.
2
School of Nano-Biotechnology & Chemical Engineering, Ulsan National Institute of Science and Technology, 689-805, Ulsan, Republic of Korea.
3
Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea.
4
Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea; The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
5
Department of Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea. Electronic address: sungho@postech.ac.kr.

Abstract

Apolipoprotein a1, which is a major lipoprotein component of high-density lipoprotein (HDL), was reported to decrease plasma glucose in type 2 diabetes. Although recent studies also have shown that apolipoprotein a1 is involved in triglyceride (TG) metabolism, the mechanisms by which apolipoprotein a1 modulates TG levels remain largely unexplored. Here we demonstrated that apolipoprotein a1 increased mitochondrial DNA and mitochondria contents through sustained AMPK activation in myotubes. This resulted in enhanced fatty acid oxidation and attenuation of free fatty acid-induced insulin resistance features in skeletal muscle. The increment of mitochondria was mediated through induction of transcription factors, such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear transcription factor 1 (NRF-1). The inhibition of AMPK by a pharmacological agent inhibited the induction of mitochondrial biogenesis. Increase of AMPK phosphorylation by apolipoprotein a1 occurs through activation of upstream kinase LKB1. Finally, we confirmed that scavenger receptor Class B, type 1 (SR-B1) is an important receptor for apolipoprotein a1 in stimulating AMPK pathway and mitochondrial biogenesis. Our study suggests that apolipoprotein a1 can alleviate obesity related metabolic disease by inducing AMPK dependent mitochondrial biogenesis.

KEYWORDS:

AMPK; Apolipoprotein a1; Mitochondria; Skeletal muscle

PMID:
25982508
DOI:
10.1016/j.cellsig.2015.05.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center