Format

Send to

Choose Destination
Neurol Neuroimmunol Neuroinflamm. 2015 May 7;2(3):e104. doi: 10.1212/NXI.0000000000000104. eCollection 2015 Jun.

B lymphocytes in neuromyelitis optica.

Author information

1
Departments of Neurology and Ophthalmology and Neuroscience Program (J.L.B.), University of Colorado, Denver; Department of Neurology (K.C.O.), Yale University School of Medicine, New Haven, CT; Neuroimmunology Unit (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada; Department of Neurology (S.S.Z., H.-C.v.B.), UCSF School of Medicine, San Francisco, CA; Department of Neurology (B.H.), Technische Universität München, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Immunology (T.F.T.), Duke University Medical Center, Durham, NC; Departments of Neurology and Neurotherapeutics (O.S.), University of Texas Southwestern Medical Center, Dallas, TX; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine and Infectious Diseases, University of California, Los Angeles; Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA; Departments of Ophthalmology and Visual Sciences and Internal Medicine (T.J.S.), University of Michigan Medical School, Ann Arbor; and Institute of Neuropathology (C.S.), University Medical Center, Göttingen, Germany.

Abstract

Neuromyelitis optica (NMO) is an inflammatory autoimmune disorder of the CNS that predominantly affects the spinal cord and optic nerves. A majority (approximately 75%) of patients with NMO are seropositive for autoantibodies against the astrocyte water channel aquaporin-4 (AQP4). These autoantibodies are predominantly IgG1, and considerable evidence supports their pathogenicity, presumably by binding to AQP4 on CNS astrocytes, resulting in astrocyte injury and inflammation. Convergent clinical and laboratory-based investigations have indicated that B cells play a fundamental role in NMO immunopathology. Multiple mechanisms have been hypothesized: AQP4 autoantibody production, enhanced proinflammatory B cell and plasmablast activity, aberrant B cell tolerance checkpoints, diminished B cell regulatory function, and loss of B cell anergy. Accordingly, many current off-label therapies for NMO deplete B cells or modulate their activity. Understanding the role and mechanisms whereby B cells contribute to initiation, maintenance, and propagation of disease activity is important to advancing our understanding of NMO pathogenesis and developing effective disease-specific therapies.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center