Send to

Choose Destination
Int J Hyg Environ Health. 2015 Jul;218(5):489-99. doi: 10.1016/j.ijheh.2015.04.002. Epub 2015 Apr 21.

Human biomonitoring of phthalate exposure in Austrian children and adults and cumulative risk assessment.

Author information

Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria. Electronic address:
Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria.
Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
Department of Nutritional Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria.


Phthalates are a class of chemicals widely used as plasticisers in a multitude of common consumer products. Through contact with such products, people are regularly exposed to phthalates, which are suspected to contribute to adverse health effects, particularly in the reproductive system. In the present study, 14 urinary phthalate metabolites of 10 parent phthalates were analysed by HPLC-MS/MS among the Austrian population aged 6-15 and 18-81 years in order to assess phthalate exposure. In the total study population, ranges of urinary phthalate metabolite concentrations were n.d.-2,105 μg/l (median 25 μg/l) for monoethyl phthalate (MEP), n.d.-88 μg/l (10 μg/l) for mono-n-butyl phthalate (MnBP), n.d.-248 μg/l (28 μg/l) for mono-isobutyl phthalate (MiBP), n.d.-57 μg/l (1.8 μg/l) for mono-benzyl phthalate (MBzP), n.d.-20 μg/l (n.d.) for mono-(2-ethylhexyl) phthalate (MEHP), n.d.-80 μg/l (2.6 μg/l) for mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), n.d.-57 μg/l (1.9 μg/l) for mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), n.d.-219 μg/l (11 μg/l) for mono-(5-carboxy-2-ethylpentyl) phthalate (5cx-MEPP), n.d.-188 μg/l (1.6 μg/l) for 3-carboxy-mono-proply phthalate (3 cx-MPP), n.d.-5.5 μg/l (n.d.) for mono-cyclohexyl phthalate (MCHP), n.d.-4.5 μg/l (n.d.) for mono-n-pentyl phthalate (MnPeP), n.d.-3.4 μg/l (n.d.) for mono-n-octyl phthalate (MnOP), n.d.-13 μg/l (n.d.) for mono-isononyl phthalate (MiNP), and n.d.-1.1 μg/l (n.d.) for mono-isodecyl phthalate (MiDP). Generally, children exhibited higher levels of exposure to the majority of investigated phthalates, except to MEP, which was found in higher concentrations in adults and senior citizens at a maximum concentration of 2,105 μg/l. Individual daily intakes were estimated based on urinary creatinine and urinary volume excretion and were then compared to acceptable exposure levels, leading to the identification of exceedances of mainly the Tolerable Daily Intakes (TDI), especially among children. The execution of a cumulative risk assessment based on Hazard Indices showed cause for concern mainly for children, as well as in rare cases for adults. Although phthalate exposure seems to have decreased in previous years, the wide distribution and existing exceedances of acceptable levels indicate that phthalate exposure should be further monitored in order to identify exposure sources and enable appropriate minimisation measures.


Cumulative risk assessment; Estimated daily intake; HPLC–MS/MS; Human biomonitoring; Urinary phthalate metabolites

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center