Format

Send to

Choose Destination
J Manag Care Spec Pharm. 2015 May;21(5):424-30.

Predictors of start of different antidepressants in patient charts among patients with depression.

Author information

1
University of Michigan, 3550 Rackham, Ann Arbor, MI 48109-1070. myrakim@umich.edu.

Abstract

BACKGROUND:

In usual psychiatric care, antidepressant treatments are selected based on physician and patient preferences rather than being randomly allocated, resulting in spurious associations between these treatments and outcome studies.

OBJECTIVE:

To identify factors recorded in electronic medical chart progress notes predictive of antidepressant selection among patients who had received a depression diagnosis. 

METHODS:

This retrospective study sample consisted of 556 randomly selected Veterans Health Administration patients diagnosed with depression from April 1, 1999, to September 30, 2004, stratified by the antidepressant agent, geographic region, gender, and year of depression cohort entry. Predictors were obtained from administrative data, and additional variables were abstracted from electronic medical chart notes in the year prior to the start of the antidepressant in 5 categories: clinical symptoms and diagnoses, substance use, life stressors, behavioral/ideation measures (e.g., suicide attempts), and treatments received. Multinomial logistic regression analysis was used to assess the predictors associated with different antidepressant prescribing, and adjusted relative risk ratios (RRR) were reported.

RESULTS:

Of the administrative data-based variables, gender, age, illicit drug abuse or dependence, and number of psychiatric medications in the prior year were significantly associated with antidepressant selection. After adjusting for administrative data-based variables, sleep problems (relative risk ratio [RRR] = 2.47) or marital issues (RRR = 2.64) identified in the charts were significantly associated with prescribing mirtazapine rather than sertraline; however, no other chart-based variables showed a significant association or an association with a large magnitude. 

CONCLUSIONS:

Some chart data-based variables were predictive of antidepressant selection, but we neither found many nor found them highly predictive of antidepressant selection in patients treated for depression.

PMID:
25943003
PMCID:
PMC4926260
DOI:
10.18553/jmcp.2015.21.5.424
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Academy of Managed Care Pharmacy Icon for PubMed Central
Loading ...
Support Center