Format

Send to

Choose Destination
Age (Dordr). 2015 Jun;37(3):9784. doi: 10.1007/s11357-015-9784-y. Epub 2015 May 5.

Strength training-induced responses in older adults: attenuation of descending neural drive with age.

Author information

1
Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Prinsesse Kristinas gt. 3, 7006, Trondheim, Norway, runar.unhjem@gmail.com.

Abstract

Although reductions in resting H-reflex responses and maximal firing frequency suggest that reduced efferent drive may limit muscle strength in elderly, there are currently no reports of V-wave measurements in elderly, reflecting the magnitude of efferent output to the muscle during maximal contraction. Furthermore, it is uncertain whether potential age-related neural deficiencies can be restored by resistance training. We assessed evoked reflex recordings in the triceps surae muscles during rest and maximal voluntary contraction (MVC), rate of force development (RFD), and muscle mass in seven elderly (74 ± 6 years) males before and after 8 weeks of heavy resistance training, contrasted by seven young (24 ± 4 years) male controls. At baseline, m. soleus (SOL) V/M ratio (0.124 ± 0.082 vs. 0.465 ± 0.197, p < 0.05) and H/M ratio (0.379 ± 0.044 vs. 0.486 ± 0.101 p = 0.07) were attenuated in elderly compared to young. Also, SOL H-reflex latency (33.29 ± 2.41 vs. 30.29 ± 0.67 ms, p < 0.05) was longer in elderly. The reduced neural drive was, despite similar leg muscle mass (10.7 ± 1.2 vs. 11.5 ± 1.4 kg), mirrored by lower MVC (158 ± 48 vs. 240 ± 54 Nm, p < 0.05) and RFD (294 ± 126 vs. 533 ± 123 Nm s(-1), p < 0.05) in elderly. In response to training SOL V/M ratio (0.184 ± 0.092, p < 0.05) increased in the elderly, yet only to a level ~40 % of the young. This was accompanied by increased MVC (190 ± 70 Nm, p < 0.05) and RFD (401 ± 147 Nm[Symbol: see text]s(-1), p < 0.05) to levels of ~80 % and ~75 % of the young. H/M ratio remained unchanged. These findings suggest that changes in supraspinal activation play a significant role in the age-related changes in muscle strength. Furthermore, this motor system impairment can to some extent be improved by heavy resistance training.

PMID:
25940749
PMCID:
PMC4418975
DOI:
10.1007/s11357-015-9784-y
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center