Send to

Choose Destination
Surg Oncol. 2015 Jun;24(2):95-9. doi: 10.1016/j.suronc.2015.04.002. Epub 2015 Apr 13.

Is the age of genetic surgery finally upon us?

Author information

Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Suite 4300, Newark, DE, 19713, USA. Electronic address:


This review discusses gene editing and its potential in oncology. Gene editing has not evolved faster towards clinical application because of its difficulty in implementation. There have been many limitations of the tools thought to be useful in therapeutic gene editing. However, recently the combinatorial use of multiple biological tools appears to have broken the barrier impending clinical development. This review gives a short primer on gene editing followed by some of the foundational work in gene editing and subsequently a discussion of programmable nucleases leading to a description of Zinc Finger Nuclease, TALENs and CRISPRs. Gene editing tools are now being used routinely to re-engineer the human genome. Theoretically, any gene or chromosomal sequence for which a targeting site can be identified could be rendered nonfunctional by the chromosomal breakage activity of Zinc Finger Nucleases, TALENs or a CRISPR/Cas9 system. Since the initial work started on the mechanism and regulation of gene editing, investigators have been searching for a way to develop these technologies as a treatment for cancer. The issue is finding a practical application of gene editing in oncology. However, progressive ideas are working their way through the research arena which may have an impact on cancer treatment.


Editing; Gene; Genetics; Vectors

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center