Format

Send to

Choose Destination
J Biogeogr. 2014 Dec 1;41(12):2307-2319. doi: 10.1111/jbi.12377.

Climate and soil attributes determine plant species turnover in global drylands.

Author information

1
Chair of Ecology and Biogeography Nicolaus Copernicus University in Toruń Lwowska1, 87-100 Toruń, Poland.
2
Área de Biodiversidad y Conservación Departamento de Biología y Geología Escuela Superior de Ciencias Experimentales y Tecnología Universidad Rey Juan Carlos, 28933 Móstoles, Spain.
3
Department of Biology University of Vermont Burlington, VT 05405 USA.
4
Departamento de Ingeniería Forestal, Escuela Técnica Superior de Ingeniería Agronómica y de Montes. Universidad de Córdoba. Edificio Leonardo da Vinci, 1 planta. Campus de Rabanales. Ctra N-IV km 396. C.P. 14071, Córdoba, Spain.
5
Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera kilómetro 1, 41013 Sevilla, Spain.
6
School of Forestry, Northern Arizona University, 200 East Pine Knoll Drive, AZ 86011, Flagstaff, USA.
7
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
8
Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Calle Profesor Aranguren S/N, 28040 Madrid, Spain.
9
Facultad de Agronomía, Universidad Nacional de La Pampa, Casilla de Correo 300, 6300 Santa Rosa, La Pampa, Argentina.
10
Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICYT).
11
Instituto Nacional de Tecnología Agropecuaria, Estación Experimental San Carlos de Bariloche, Casilla de Correo 277 (8400), Bariloche, Río Negro, Argentina.
12
Instituto de Ecología, Universidad Técnica Particular de Loja, San Cayetano Alto, Marcelino Champagnat, Loja, Ecuador.
13
Departamento de Biología, Universidad de La Serena, Casilla 599.
14
UR Plant Biodiversity and Ecosystems in Arid Environments, Faculty of Sciences, University of Sfax. Route de Sokra, km 3.5, Boîte Postale 802, 3018, Sfax, Tunisia.
15
Departamento de Suelos; Universidad Centroccidental Lizandro Alvarado, Barquisimeto, estado Lara, Venezuela.
16
Direction Régionale des Eaux et Forêts et de la Lutte Contre la Désertification du Rif, Avenue Mohamed 5, Boîte Postale 722, 93000 Tétouan, Morocco.
17
Instituto de Edafología, Facultad de Agronomía, Universidad Central de Venezuela, Campus UCV-Maracay, ZP 2101, estado Aragua, Venezuela.
18
IANIGLA, CCT Mendoza, CONICET A. Ruiz Leal s/n, Parque General San Martín, Mendoza, Argentina. CP.: M5502IRA.
19
Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.
20
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile.
21
Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile; Laboratorio de Biogeoquímica, Centro de Agroecología Tropical, Universidad Experimental Simón Rodríguez, Apdo 47925, Caracas, Venezuela.
22
Department of Range and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran.
23
Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
24
Departamento de Biologia, Universidade Federal de Minas Gerais, Minas Gerais 31270-901, Brasil.
25
Department of Evolution, Ecology and Organismal Biology, Ohio State University, 318 West 12 Avenue, Columbus, OH 43210, USA.
26
Université du Québec à Montréal Pavillon des sciences biologiques Département des sciences biologiques 141 Président-Kennedy Montréal, Québec H2X 3Y5, Canada.
27
Zoology Department of the National Museums of Kenya, Nairobi, Kenya.
28
Departamento de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, J5402DCS Rivadavia, San Juan, Argentina.
29
Production Systems and the Environment Sub-Program, International Potato Center. Apartado 1558, Lima 12, Peru.
30
Department of Natural Resources and Agronomy, Agriculture Research Organization, Ministry of Agriculture, Gilat Research Center, Mobile Post Negev 85280, Israel.
31
Departamento de Ciencias Biológicas, Universidade Estadual de Feira de Santana, Avenida Transnordestina Sin Número, Bairro Novo Horizonte, Feira de Santana, 44036-900, Brasil.
32
Departamento de Ecología Evolutiva, Museo Nacional de CCNN (CSIC), Madrid, Spain.
33
Institute of Grassland Science, Key Laboratory for Vegetation Ecology, Northeast Normal University, Changchun, Jilin 130024, China.
#
Contributed equally

Abstract

AIM:

Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition.

LOCATION:

224 sites in diverse dryland plant communities from 22 geographical regions in six continents.

METHODS:

Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables.

RESULTS:

Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm).

MAIN CONCLUSIONS:

Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.

KEYWORDS:

aridity; beta diversity; climatic variability; global environmental change; habitat filtering; soil fertility

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center