Format

Send to

Choose Destination
Neurobiol Dis. 2015 Jul;79:28-40. doi: 10.1016/j.nbd.2015.04.003. Epub 2015 Apr 22.

Reconstruction of brain circuitry by neural transplants generated from pluripotent stem cells.

Author information

1
Florey Institute for Neuroscience and Mental Health, University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia.
2
Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, S-22184 Lund, Sweden. Electronic address: anders.bjorklund@med.lu.se.

Abstract

Pluripotent stem cells (embryonic stem cells, ESCs, and induced pluripotent stem cells, iPSCs) have the capacity to generate neural progenitors that are intrinsically patterned to undergo differentiation into specific neuronal subtypes and express in vivo properties that match the ones formed during normal embryonic development. Remarkable progress has been made in this field during recent years thanks to the development of more refined protocols for the generation of transplantable neuronal progenitors from pluripotent stem cells, and the access to new tools for tracing of neuronal connectivity and assessment of integration and function of grafted neurons. Recent studies in brains of neonatal mice or rats, as well as in rodent models of brain or spinal cord damage, have shown that ESC- or iPSC-derived neural progenitors can be made to survive and differentiate after transplantation, and that they possess a remarkable capacity to extend axons over long distances and become functionally integrated into host neural circuitry. Here, we summarize these recent developments in the perspective of earlier studies using intracerebral and intraspinal transplants of primary neurons derived from fetal brain, with special focus on the ability of human ESC- and iPSC-derived progenitors to reconstruct damaged neural circuitry in cortex, hippocampus, the nigrostriatal system and the spinal cord, and we discuss the intrinsic and extrinsic factors that determine the growth properties of the grafted neurons and their capacity to establish target-specific long-distance axonal connections in the damaged host brain.

KEYWORDS:

Cell replacement; Embryonic stem; Induced pluripotent; Integration; Regeneration; Transplantation

PMID:
25913029
DOI:
10.1016/j.nbd.2015.04.003
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center