From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks

Sci Rep. 2015 Apr 24:5:9562. doi: 10.1038/srep09562.

Abstract

To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium Signaling
  • Cell Culture Techniques
  • Cells, Cultured
  • Dimethylpolysiloxanes / chemistry
  • Microscopy, Confocal
  • Models, Theoretical
  • Nanostructures / chemistry*
  • Nanotubes, Carbon / chemistry
  • Neurons / cytology*
  • Neurons / metabolism
  • Porosity
  • Rats
  • Tissue Scaffolds

Substances

  • Dimethylpolysiloxanes
  • Nanotubes, Carbon
  • baysilon