Format

Send to

Choose Destination
Oncotarget. 2015 Apr 20;6(11):9086-98.

Inhibition of the HER2-YB1-AR axis with Lapatinib synergistically enhances Enzalutamide anti-tumor efficacy in castration resistant prostate cancer.

Author information

1
The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
2
Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.

Abstract

Incurable castration-resistant prostate cancer (CRPC) is driven by androgen receptor (AR) activation. Potent therapies that prevent AR signaling, such as Enzalutamide (ENZ), are mainstay treatments for CRPC; however patients eventually progress with ENZ resistant (ENZR) disease. In this study, we investigated one mechanism of ENZ resistance, and tried to improve therapeutic efficiency of ENZ. We found HER2 expression is increased in ENZR tumors and cell lines, and is induced by ENZ treatment of LNCaP cells. ENZ-induced HER2 overexpression was dependent on AKT-YB1 activation and modulated AR activity. HER2 dependent AR activation in LNCaP and ENZR cells was effectively blocked by treatment with the EGFR/HER2 inhibitor Lapatinib, which reduced cell viability and increased apoptosis. Despite efficacy in vitro, in vivo monotherapy with Lapatinib did not prevent ENZR tumor growth. However, combination treatment of Lapatinib with ENZ most effectively induced cell death in LNCaP cells in vitro and was more effective than ENZ alone in preventing tumor growth in an in vivo model of CRPC. These results suggest that while HER2 overexpression and subsequent AR activation is a targetable mechanism of resistance to ENZ, therapy using Lapatinib is only a rational therapeutic approach when used in combination with ENZ in CRPC.

KEYWORDS:

HER2; castration resistant prostate cancer; enzalutamide; lapatinib

PMID:
25871401
PMCID:
PMC4496204
DOI:
10.18632/oncotarget.3602
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Impact Journals, LLC Icon for PubMed Central
Loading ...
Support Center