Format

Send to

Choose Destination
Neuroscience. 1989;32(1):113-26.

Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation.

Author information

1
Department of Anatomy & Embryology, University of Nijmegen, The Netherlands.

Abstract

The development of the axial musculature, its innervation and early locomotion in Xenopus laevis embryos are described. Between stages 17 and 40 some 45 myotomes are formed on each side of the body. During this period the animals develop from non-motile to free swimming embryos. Using fluorescein-conjugated bungarotoxin the acquisition of acetylcholine receptor-sites was studied. At stage 25 (early flexure stage) bound bungarotoxin was confined to the first seven intermyotomal clefts, in free swimming embryos (stage 33) to the first 20 clefts. Application of horseradish peroxidase to the intermyotomal clefts in embryos ranging from stages 25 to 37/38 revealed that primary motoneurons were usually situated 100-400 microns, i.e. 0.5-1.5 myotomes, rostral to the cleft they innervated. The motor axons left the spinal cord at the caudal side of each spinal segment where neural crest was present between the cord and the myotomes. At stage 25 ventral root activity could be recorded extracellularly from only the first three intermyotomal clefts, at stage 32/33 from the first 16 clefts. The first spontaneous rhythmic swimming-like activity could be recorded around stage 28. Between stages 27 and 32/33 the initial swimming frequency and the swimming episode duration increased at least three-fold. Comparable results were obtained with high-speed cinematography and measurements with a photoelectric transducer. Between stages 17 and 40 the number of myotomes increased by 0.9 myotome h, approximately 11.4 h later followed by the innervation of the myotomes at 0.7 cleft/h. About 3.6 h after this, ventral root activity appeared at the rate of 0.6 cleft h. This study shows that the early swimming pattern generating neuronal network, located within the rostral spinal cord, reaches a state of "critical mass" around stage 27, at which the first rhythmic swimming activity occurs. At least 6-10 functional spinal segments and adjacent myotomes are required for early swimming.

PMID:
2586744
DOI:
10.1016/0306-4522(89)90111-5
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center