Format

Send to

Choose Destination
Front Cell Neurosci. 2015 Mar 24;9:88. doi: 10.3389/fncel.2015.00088. eCollection 2015.

An epigenetic hypothesis for the genomic memory of pain.

Author information

1
Department of Biology, Stanford University Palo Alto, CA, USA ; Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada.
2
Department of Anesthesiology, Stanford University Palo Alto, CA, USA ; Integrated Program in Neuroscience, McGill University Montréal, QC, Canada ; Alan Edwards Centre for Research on Pain, McGill University Montréal, QC, Canada.
3
Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada.
4
Alan Edwards Centre for Research on Pain, McGill University Montréal, QC, Canada ; Faculty of Dentistry, McGill University Montréal, QC, Canada.
5
Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Integrated Program in Neuroscience, McGill University Montréal, QC, Canada ; Alan Edwards Centre for Research on Pain, McGill University Montréal, QC, Canada ; Faculty of Dentistry, McGill University Montréal, QC, Canada ; Department of Anesthesiology, Anesthesia Research Unit, Faculty of Medicine, McGill University Montréal, QC, Canada.
6
Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University Montréal, QC, Canada ; Sackler Program for Epigenetics and Developmental Psychobiology, McGill University Montréal, QC, Canada ; Integrated Program in Neuroscience, McGill University Montréal, QC, Canada.

Abstract

Chronic pain is accompanied with long-term sensory, affective and cognitive disturbances. What are the mechanisms that mediate the long-term consequences of painful experiences and embed them in the genome? We hypothesize that alterations in DNA methylation, an enzymatic covalent modification of cytosine bases in DNA, serve as a "genomic" memory of pain in the adult cortex. DNA methylation is an epigenetic mechanism for long-term regulation of gene expression. Neuronal plasticity at the neuroanatomical, functional, morphological, physiological and molecular levels has been demonstrated throughout the neuroaxis in response to persistent pain, including in the adult prefrontal cortex (PFC). We have previously reported widespread changes in gene expression and DNA methylation in the PFC many months following peripheral nerve injury. In support of this hypothesis, we show here that up-regulation of a gene involved with synaptic function, Synaptotagmin II (syt2), in the PFC in a chronic pain model is associated with long-term changes in DNA methylation. The challenges of understanding the contributions of epigenetic mechanisms such as DNA methylation within the PFC to pain chronicity and their therapeutic implications are discussed.

KEYWORDS:

DNA methylation; chronic pain; epigenetics; neuropathy; neuroplasticity; prefrontal cortex; synaptotagmin

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center