Send to

Choose Destination
Nat Commun. 2015 Apr 7;6:6781. doi: 10.1038/ncomms7781.

Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking.

Author information

Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea.
1] Department of Biological Sciences, KAIST, Daejeon 305-701, Korea [2] Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-701, Korea.


Primary cilia exert a profound impact on cell signalling and cell cycle progression. Recently, actin cytoskeleton destabilization has been recognized as a dominant inducer of ciliogenesis, but the exact mechanisms regulating ciliogenesis remain poorly understood. Here we show that the actin cytoskeleton remodelling controls ciliogenesis by regulating transcriptional coactivator YAP/TAZ as well as ciliary vesicle trafficking. Cytoplasmic retention of YAP/TAZ correlates with active ciliogenesis either in spatially confined cells or in cells treated with an actin filament destabilizer. Moreover, knockdown of YAP/TAZ is sufficient to induce ciliogenesis, whereas YAP/TAZ hyperactivation suppresses serum starvation-mediated ciliogenesis. We also identify actin remodelling factors LIMK2 and TESK1 as key players in the ciliogenesis control network in which YAP/TAZ and directional vesicle trafficking are integral components. Our work provides new insights for understanding the link between actin dynamics and ciliogenesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center