Format

Send to

Choose Destination
Dev Cell. 2015 Apr 20;33(2):136-49. doi: 10.1016/j.devcel.2015.02.022. Epub 2015 Apr 2.

The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division.

Author information

1
Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
2
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
3
Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA.
4
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA; Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
5
Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901, USA. Electronic address: dong@waksman.rutgers.edu.

Abstract

Cell polarization is linked to fate determination during asymmetric division of plant stem cells, but the underlying molecular mechanisms remain unknown. In Arabidopsis, BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL) is polarized to control stomatal asymmetric division. A mitogen-activated protein kinase (MAPK) cascade determines terminal stomatal fate by promoting the degradation of the lineage determinant SPEECHLESS (SPCH). Here, we demonstrate that a positive-feedback loop between BASL and the MAPK pathway constitutes a polarity module at the cortex. Cortical localization of BASL requires phosphorylation mediated by MPK3/6. Phosphorylated BASL functions as a scaffold and recruits the MAPKKK YODA and MPK3/6 to spatially concentrate signaling at the cortex. Activated MPK3/6 reinforces the feedback loop by phosphorylating BASL and inhibits stomatal fate by phosphorylating SPCH. Polarization of the BASL-MAPK signaling feedback module represents a mechanism connecting cell polarity to fate differentiation during asymmetric stem cell division in plants.

PMID:
25843888
PMCID:
PMC4406870
DOI:
10.1016/j.devcel.2015.02.022
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center