Format

Send to

Choose Destination
Am J Clin Nutr. 2015 Apr;101(4):870-8. doi: 10.3945/ajcn.114.097923. Epub 2015 Jan 14.

Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): a 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study.

Author information

1
From the Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark (MB, AB, KVR, AGS, SG, and KH); the Department of Food Science, Aarhus University, Tjele, Denmark (BA, MKL, and TKD); NNF Centre for Basic Metabolic Research and the Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark (JJH); Unilabs A/S, Copenhagen, Denmark (AH); the School of Pharmacy & Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland (SO and LO); the Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands (LA); Arla Foods Ingredients Group P/S, Viby J., Denmark (EJ); and GCO Corporate Research and Innovation, Viby J., Denmark (MMC).

Abstract

BACKGROUND:

Abdominal obesity and exaggerated postprandial lipemia are independent risk factors for cardiovascular disease (CVD) and mortality, and both are affected by dietary behavior.

OBJECTIVE:

We investigated whether dietary supplementation with whey protein and medium-chain saturated fatty acids (MC-SFAs) improved postprandial lipid metabolism in humans with abdominal obesity.

DESIGN:

We conducted a 12-wk, randomized, double-blinded, diet intervention study. Sixty-three adults were randomly allocated to one of 4 diets in a 2 × 2 factorial design. Participants consumed 60 g milk protein (whey or casein) and 63 g milk fat (with high or low MC-SFA content) daily. Before and after the intervention, a high-fat meal test was performed. We measured changes from baseline in fasting and postprandial triacylglycerol, apolipoprotein B-48 (apoB-48; reflecting chylomicrons of intestinal origin), free fatty acids (FFAs), insulin, glucose, glucagon, glucagon-like peptide 1 (GLP-1), and gastric inhibitory polypeptide (GIP). Furthermore, changes in the expression of adipose tissue genes involved in lipid metabolism were investigated. Two-factor ANOVA was used to examine the difference between protein types and fatty acid compositions, as well as any interaction between the two.

RESULTS:

Fifty-two participants completed the study. We found that the postprandial apoB-48 response decreased significantly after whey compared with casein (P = 0.025) independently of fatty acid composition. Furthermore, supplementation with casein resulted in a significant increase in the postprandial GLP-1 response compared with whey (P = 0.003). We found no difference in postprandial triacylglycerol, FFA, insulin, glucose, glucagon, or GIP related to protein type or MC-SFA content. We observed no interaction between milk protein and milk fat on postprandial lipemia.

CONCLUSION:

We found that a whey protein supplement decreased the postprandial chylomicron response compared with casein in persons with abdominal obesity, thereby indicating a beneficial impact on CVD risk. This trial was registered at clinicaltrials.gov as NCT01472666.

KEYWORDS:

abdominal obesity; adipose tissue gene expression; apoB-48; casein; dairy; incretin; medium-chain saturated fatty acid; milk fat; milk protein; postprandial lipemia; whey

PMID:
25833983
DOI:
10.3945/ajcn.114.097923
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center