Format

Send to

Choose Destination
Mol Cancer Res. 2015 Jul;13(7):1149-60. doi: 10.1158/1541-7786.MCR-14-0182. Epub 2015 Apr 1.

STAT3 and HIF1α Signaling Drives Oncogenic Cellular Phenotypes in Malignant Peripheral Nerve Sheath Tumors.

Author information

1
Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom.
2
Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom. teea@cardiff.ac.uk.

Abstract

Therapeutic options are limited for neurofibromatosis type 1 (NF1)-associated malignant peripheral nerve sheath tumors (MPNST) and clinical trials using drug agents have so far been unsuccessful. This lack of clinical success is likely attributed to high levels of intratumoral molecular heterogeneity and variations in signal transduction within MPNSTs. To better explore the variance of malignant signaling properties within heterogeneous MPNSTs, four MPNST cell lines (ST8814, S462, S1844.1, and S1507.2) were used. The data demonstrate that small-molecule inhibition of the MET proto-oncogene and mTOR had variable outcome when preventing wound healing, cell migration, and invasion, with the S462 cells being highly resistant to both. Of interest, targeted inhibition of the STAT3 transcription factor suppressed wound healing, cell migration, invasion, and tumor formation in all four MPNST lines, which demonstrates that unlike MET and mTOR, STAT3 functions as a common driver of tumorigenesis in NF1-MPNSTs. Of clinical importance, STAT3 knockdown was sufficient to block the expression of hypoxia-inducible factor (HIF)1α, HIF2α, and VEGF-A in all four MPNST lines. Finally, the data demonstrate that wound healing, cell migration, invasion, and tumor formation through STAT3 are highly dependent on HIF signaling, where knockdown of HIF1α ablated these oncogenic facets of STAT3.

IMPLICATIONS:

This research reveals that aberrant STAT3 and HIF1a activity drives tumor progression in MPNSTs, indicating that inhibition of the STAT3/HIF1α/VEGF-A signaling axis is a viable treatment strategy.

PMID:
25833823
DOI:
10.1158/1541-7786.MCR-14-0182
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center