Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2015 May 4;25(9):1123-34. doi: 10.1016/j.cub.2015.02.054. Epub 2015 Mar 26.

Investigating the regulation of stem and progenitor cell mitotic progression by in situ imaging.

Author information

  • 1Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada.
  • 2Institute of Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada. Electronic address: jc.labbe@umontreal.ca.
  • 3Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address: pmaddox@unc.edu.

Abstract

Genome stability relies upon efficacious chromosome congression and regulation by the spindle assembly checkpoint (SAC). The study of these fundamental mitotic processes in adult stem and progenitor cells has been limited by the technical challenge of imaging mitosis in these cells in situ. Notably, how broader physiological changes, such as dietary intake or age, affect mitotic progression in stem and/or progenitor cells is largely unknown. Using in situ imaging of C. elegans adult germlines, we describe the mitotic parameters of an adult stem and progenitor cell population in an intact animal. We find that SAC regulation in germline stem and progenitor cells is distinct from that found in early embryonic divisions and is more similar to that of classical tissue culture models. We further show that changes in organismal physiology affect mitotic progression in germline stem and progenitor cells. Reducing dietary intake produces a checkpoint-dependent delay in anaphase onset, and inducing dietary restriction when the checkpoint is impaired increases the incidence of segregation errors in mitotic and meiotic cells. Similarly, developmental aging of the germline stem and progenitor cell population correlates with a decline in the rate of several mitotic processes. These results provide the first in vivo validation of models for SAC regulation developed in tissue culture systems and demonstrate that several fundamental features of mitotic progression in adult stem and progenitor cells are highly sensitive to organismal physiological changes.

Comment in

PMID:
25819563
DOI:
10.1016/j.cub.2015.02.054
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center