Format

Send to

Choose Destination
Cell Rep. 2015 Apr 7;11(1):51-60. doi: 10.1016/j.celrep.2015.03.009. Epub 2015 Mar 26.

Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti.

Author information

1
Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
2
Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA.
3
Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, USA. Electronic address: ben.matthews@rockefeller.edu.

Abstract

The mosquito Aedes aegypti is a potent vector of the chikungunya, yellow fever, and dengue viruses, responsible for hundreds of millions of infections and over 50,000 human deaths per year. Mutagenesis in Ae. aegypti has been established with TALENs, ZFNs, and homing endonucleases, which require the engineering of DNA-binding protein domains to provide genomic target sequence specificity. Here, we describe the use of the CRISPR-Cas9 system to generate site-specific mutations in Ae. aegypti. This system relies on RNA-DNA base-pairing to generate targeting specificity, resulting in efficient and flexible genome-editing reagents. We investigate the efficiency of injection mix compositions, demonstrate the ability of CRISPR-Cas9 to generate different types of mutations via disparate repair mechanisms, and report stable germline mutations in several genomic loci. This work offers a detailed exploration into the use of CRISPR-Cas9 in Ae. aegypti that should be applicable to non-model organisms previously out of reach of genetic modification.

PMID:
25818303
PMCID:
PMC4394034
DOI:
10.1016/j.celrep.2015.03.009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center