Format

Send to

Choose Destination
PLoS Pathog. 2015 Mar 27;11(3):e1004792. doi: 10.1371/journal.ppat.1004792. eCollection 2015 Mar.

Lipidomic analysis links mycobactin synthase K to iron uptake and virulence in M. tuberculosis.

Author information

1
Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America.
2
Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America.

Abstract

The prolonged survival of Mycobacterium tuberculosis (M. tb) in the host fundamentally depends on scavenging essential nutrients from host sources. M. tb scavenges non-heme iron using mycobactin and carboxymycobactin siderophores, synthesized by mycobactin synthases (Mbt). Although a general mechanism for mycobactin biosynthesis has been proposed, the biological functions of individual mbt genes remain largely untested. Through targeted gene deletion and global lipidomic profiling of intact bacteria, we identify the essential biochemical functions of two mycobactin synthases, MbtK and MbtN, in siderophore biosynthesis and their effects on bacterial growth in vitro and in vivo. The deletion mutant, ΔmbtN, produces only saturated mycobactin and carboxymycobactin, demonstrating an essential function of MbtN as the mycobactin dehydrogenase, which affects antigenicity but not iron uptake or M. tb growth. In contrast, deletion of mbtK ablated all known forms of mycobactin and its deoxy precursors, defining MbtK as the essential acyl transferase. The mbtK mutant showed markedly reduced iron scavenging and growth in vitro. Further, ΔmbtK was attenuated for growth in mice, demonstrating a non-redundant role of hydroxamate siderophores in virulence, even when other M. tb iron scavenging mechanisms are operative. The unbiased lipidomic approach also revealed unexpected consequences of perturbing mycobactin biosynthesis, including extreme depletion of mycobacterial phospholipids. Thus, lipidomic profiling highlights connections among iron acquisition, phospholipid homeostasis, and virulence, and identifies MbtK as a lynchpin at the crossroads of these phenotypes.

PMID:
25815898
PMCID:
PMC4376628
DOI:
10.1371/journal.ppat.1004792
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center