Format

Send to

Choose Destination
Cancer Metab. 2015 Mar 26;3:4. doi: 10.1186/s40170-015-0130-8. eCollection 2015.

Mitophagy and cancer.

Author information

1
The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Cancer Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA.
2
The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Molecular Metabolism & Nutrition, 929 East 57th Street, Chicago, IL 60637 USA.
3
The Ben May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Cancer Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 USA ; The Committee on Molecular Metabolism & Nutrition, 929 East 57th Street, Chicago, IL 60637 USA ; The Ben May Department for Cancer Research, The University of Chicago Comprehensive Cancer Center, The Gordon Center for Integrative Sciences, W338 929 East 57th Street, Chicago, IL 60637 USA.

Abstract

Mitophagy is a selective form of macro-autophagy in which mitochondria are selectively targeted for degradation in autophagolysosomes. Mitophagy can have the beneficial effect of eliminating old and/or damaged mitochondria, thus maintaining the integrity of the mitochondrial pool. However, mitophagy is not only limited to the turnover of dysfunctional mitochondria but also promotes reduction of overall mitochondrial mass in response to certain stresses, such as hypoxia and nutrient starvation. This prevents generation of reactive oxygen species and conserves valuable nutrients (such as oxygen) from being consumed inefficiently, thereby promoting cellular survival under conditions of energetic stress. The failure to properly modulate mitochondrial turnover in response to oncogenic stresses has been implicated both positively and negatively in tumorigenesis, while the potential of targeting mitophagy specifically as opposed to autophagy in general as a therapeutic strategy remains to be explored. The challenges and opportunities that come with our heightened understanding of the role of mitophagy in cancer are reviewed here.

KEYWORDS:

Autophagosomes; BNIP3; Mitochondrial dysfunction; Mitophagy; NIX; Parkin

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center