Send to

Choose Destination
Dalton Trans. 2015 Apr 28;44(16):7524-37. doi: 10.1039/c4dt03827d.

Electronic band structure and low-temperature transport properties of the type-I clathrate Ba8Ni(x)Ge(46-x-y□y).

Author information

Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany.


We present the evolution of the low-temperature thermodynamic, galvanomagnetic and thermoelectric properties of the type-I clathrate Ba8Ni(x)Ge(46-x-y□y) with the Ni concentration studied on polycrystalline samples with 0.0 ≤ x ≤ 6.0 by means of specific heat, Hall effect, electrical resistivity, thermopower and thermal conductivity measurements in the 2-350 K temperature range and supported by first-principles calculations. The experimental results evidence a 2a × 2a × 2a supercell described in the space group Ia3d for x ≤ 1.0 and a primitive unit cell a × a × a (space group Pm3n) above this Ni content. This concentration also marks the limit between a regime where both electrons and holes contribute to the electrical conduction (x ≤ 1.0) and a conventional, single-carrier regime (x > 1.0). This evolution is traced by the variations in the thermopower and Hall effect with x. In agreement with band structure calculations, increasing the Ni content drives the system from a nearly-compensated semimetallic state (x = 0.0) towards a narrow-band-gap semiconducting state (x = 4.0). A crossover from an n-type to a p-type conduction occurs when crossing the x = 4.0 concentration i.e. for x = 4.1. The solid solution Ba8Ni(x)Ge(46-x-y□y) therefore provides an excellent experimental platform to probe the evolution of the peculiar properties of the parent type-I clathrate Ba8Ge43□3 upon Ge/Ni substitution and filling up of the vacancies, which might be universal among the ternary systems at low substitution levels.


Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center