Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis

J Biol Chem. 2015 May 15;290(20):12719-30. doi: 10.1074/jbc.M114.634840. Epub 2015 Mar 23.

Abstract

Channelrhodopsin-1 from the alga Chlamydomonas augustae (CaChR1) is a low-efficiency light-activated cation channel that exhibits properties useful for optogenetic applications such as a slow light inactivation and a red-shifted visible absorption maximum as compared with the more extensively studied channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Previously, both resonance Raman and low-temperature FTIR difference spectroscopy revealed that unlike CrChR2, CaChR1 under our conditions exhibits an almost pure all-trans retinal composition in the unphotolyzed ground state and undergoes an all-trans to 13-cis isomerization during the primary phototransition typical of other microbial rhodopsins such as bacteriorhodopsin (BR). Here, we apply static and rapid-scan FTIR difference spectroscopy along with site-directed mutagenesis to characterize the proton transfer events occurring upon the formation of the long-lived conducting P2 (380) state of CaChR1. Assignment of carboxylic C=O stretch bands indicates that Asp-299 (homolog to Asp-212 in BR) becomes protonated and Asp-169 (homolog to Asp-85 in BR) undergoes a net change in hydrogen bonding relative to the unphotolyzed ground state of CaChR1. These data along with earlier FTIR measurements on the CaChR1 → P1 transition are consistent with a two-step proton relay mechanism that transfers a proton from Glu-169 to Asp-299 during the primary phototransition and from the Schiff base to Glu-169 during P2 (380) formation. The unusual charge neutrality of both Schiff base counterions in the P2 (380) conducting state suggests that these residues may function as part of a cation selective filter in the open channel state of CaChR1 as well as other low-efficiency ChRs.

Keywords: Fourier Transform IR (FTIR); Ion Channel; Membrane Protein; Optogenetics; Rhodopsin.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chlamydomonas reinhardtii / chemistry
  • Chlamydomonas reinhardtii / genetics
  • Chlamydomonas reinhardtii / metabolism*
  • Mutagenesis, Site-Directed
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Protons*
  • Rhodopsin / genetics
  • Rhodopsin / metabolism*
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Plant Proteins
  • Protons
  • Rhodopsin

Associated data

  • PDB/3UG9