Format

Send to

Choose Destination
Nat Med. 2015 Apr;21(4):373-82. doi: 10.1038/nm.3826. Epub 2015 Mar 23.

Activation of AMPKα2 in adipocytes is essential for nicotine-induced insulin resistance in vivo.

Author information

1
1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
2
Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
3
Department of Cardiology, Cardiovascular Research Center, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
4
1] Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA. [2] Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China.
5
1] INSERM, U1016, Institut Cochin, Paris, France. [2] CNRS, UMR 8104, Paris, France. [3] Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
6
Key Laboratory of Hubei Province on Cardio-Cerebral Diseases, Hubei University of Science and Technology, Xianning, Hubei, China.

Abstract

Cigarette smoking promotes body weight reduction in humans while paradoxically also promoting insulin resistance (IR) and hyperinsulinemia. However, the mechanisms behind these effects are unclear. Here we show that nicotine, a major constituent of cigarette smoke, selectively activates AMP-activated protein kinase α2 (AMPKα2) in adipocytes, which in turn phosphorylates MAP kinase phosphatase-1 (MKP1) at serine 334, initiating its proteasome-dependent degradation. The nicotine-dependent reduction of MKP1 induces the aberrant activation of both p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, leading to increased phosphorylation of insulin receptor substrate 1 (IRS1) at serine 307. Phosphorylation of IRS1 leads to its degradation, protein kinase B inhibition, and the loss of insulin-mediated inhibition of lipolysis. Consequently, nicotine increases lipolysis, which results in body weight reduction, but this increase also elevates the levels of circulating free fatty acids and thus causes IR in insulin-sensitive tissues. These results establish AMPKα2 as an essential mediator of nicotine-induced whole-body IR in spite of reductions in adiposity.

PMID:
25799226
PMCID:
PMC4390501
DOI:
10.1038/nm.3826
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center