Format

Send to

Choose Destination
J Nutr. 2015 May;145(5):939-44. doi: 10.3945/jn.114.206607. Epub 2015 Mar 18.

Fish Oil Contaminated with Persistent Organic Pollutants Reduces Antioxidant Capacity and Induces Oxidative Stress without Affecting Its Capacity to Lower Lipid Concentrations and Systemic Inflammation in Rats.

Author information

1
School of Exercise and Nutritional Sciences, and mhong2@mail.sdsu.edu.
2
School of Exercise and Nutritional Sciences, and.
3
Graduate School of Public Health, San Diego State University, San Diego, CA.

Abstract

BACKGROUND:

Numerous studies have investigated the benefits of fish, fish oil, and ω-3 (n-3) polyunsaturated fatty acids against cardiovascular diseases. However, concern surrounding contamination with persistent organic pollutants (POPs) prompts caution in the recommendation to consume fish and fish oil.

OBJECTIVE:

The present study compared the effects of fish oil contaminated with polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs) on serum lipid profiles, inflammation, and oxidative stress.

METHODS:

Twenty eight-day-old male Sprague-Dawley rats (n = 30) consumed diets of unmodified fish oil (FO) consisting of 15% fat by weight, persistent organic pollutant-contaminated fish oil (POP FO) (PCBs at 2.40 μg/g; OCs at 3.80 μg/g FO), or corn oil (control; CO) for 9 wk. Lipid profiles and C-reactive protein concentrations were assessed. Hepatic gene expression related to lipid metabolism was determined by real time quantitative polymerase chain reaction analysis.

RESULTS:

After 9 wk of feeding, accumulation of PCBs and OCs in the fat tissue of the POP FO group compared with the other 2 groups was confirmed (P < 0.01). Both fish oil groups showed greater HDL cholesterol (FO 53 ± 5.3 and POP FO 55 ± 7.7 vs. CO 34 ± 2.3 mg/dL), but lower triglycerides (24 ± 2.8 and 22 ± 3.0 vs. 43 ± 5.6 mg/dL), LDL cholesterol (38 ± 14 and 34 ± 9.2 vs. 67 ± 4.4 mg/dL), and C-reactive protein (113 ± 20 and 120 ± 26 vs. 189 ± 22 μg/dL) compared with the CO group (P < 0.05). Gene expression of fatty acid synthase in both fish oil groups was also less than in the CO group (P < 0.05). However, the POP FO group showed greater lipid peroxidation (5.1 ± 0.7 vs. 2.9 ± 0.9 and 2.6 ± 0.6 μM) and less antioxidant capacity (0.08 ± 0.06 vs. 0.5 ± 0.1 and 0.4 ± 0.1 mM) than the CO and FO groups (P < 0.05).

CONCLUSIONS:

These findings indicate that, despite exhibiting benefits on serum lipid concentrations and inflammation, contamination with PCBs and OCs showed significant negative effects on oxidative stress and antioxidant capacity in rats. Future studies should investigate the effects of different contaminant doses and the possibility of a dose-dependent response, a lengthened feeding time, and interactions between contaminant mixtures and oils of varying composition to advise on dietary consumption of fish and fish oil.

KEYWORDS:

CVD; fish oil; inflammation; oxidative stress; persistent organic pollutants

PMID:
25788582
PMCID:
PMC4408738
DOI:
10.3945/jn.114.206607
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center