Format

Send to

Choose Destination
Nat Rev Clin Oncol. 2015 Jun;12(6):344-57. doi: 10.1038/nrclinonc.2015.38. Epub 2015 Mar 17.

Genomics in acute lymphoblastic leukaemia: insights and treatment implications.

Author information

1
Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, TN 38105, USA.

Abstract

Acute lymphoblastic leukaemia (ALL) is the commonest childhood cancer and an important cause of morbidity from haematological malignancies in adults. In the past several years, we have witnessed major advances in the understanding of the genetic basis of ALL. Genome-wide profiling studies, including microarray analysis and genome sequencing, have helped identify multiple key cellular pathways that are frequently mutated in ALL such as lymphoid development, tumour suppression, cytokine receptors, kinase and Ras signalling, and chromatin remodeling. These studies have characterized new subtypes of ALL, notably Philadelphia chromosome-like ALL, which is a high-risk subtype characterized by a diverse range of alterations that activate cytokine receptors or tyrosine kinases amenable to inhibition with approved tyrosine kinase inhibitors. Genomic profiling has also enabled the identification of inherited genetic variants of ALL that influence the risk of leukaemia development, and characterization of the relationship between genetic variants, clonal heterogeneity and the risk of relapse. Many of these findings are of direct clinical relevance and ongoing studies implementing clinical sequencing in leukaemia diagnosis and management have great potential to improve the outcome of patients with high-risk ALL.

PMID:
25781572
DOI:
10.1038/nrclinonc.2015.38
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center