Format

Send to

Choose Destination
Elife. 2015 Mar 11;4. doi: 10.7554/eLife.06380.

2.8 Å resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy.

Author information

1
National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, United States.

Abstract

Recent developments in detector hardware and image-processing software have revolutionized single particle cryo-electron microscopy (cryoEM) and led to a wave of near-atomic resolution (typically ∼3.3 Å) reconstructions. Reaching resolutions higher than 3 Å is a prerequisite for structure-based drug design and for cryoEM to become widely interesting to pharmaceutical industries. We report here the structure of the 700 kDa Thermoplasma acidophilum 20S proteasome (T20S), determined at 2.8 Å resolution by single-particle cryoEM. The quality of the reconstruction enables identifying the rotameric conformation adopted by some amino-acid side chains (rotamers) and resolving ordered water molecules, in agreement with the expectations for crystal structures at similar resolutions. The results described in this manuscript demonstrate that single particle cryoEM is capable of competing with X-ray crystallography for determination of protein structures of suitable quality for rational drug design.

KEYWORDS:

T. acidophilum; biophysics; direct detectors; electron microscopy; image processing; structural biology

PMID:
25760083
PMCID:
PMC4391500
DOI:
10.7554/eLife.06380
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for eLife Sciences Publications, Ltd Icon for PubMed Central
Loading ...
Support Center