Format

Send to

Choose Destination
J Hosp Med. 2015 Jun;10(6):396-402. doi: 10.1002/jhm.2347. Epub 2015 Mar 11.

Diagnostic accuracy and effectiveness of automated electronic sepsis alert systems: A systematic review.

Author information

1
Division of General Internal Medicine, University Texas Southwestern Medical Center, Dallas, Texas.
2
Divsion of Hospital Medicine, University of California San Francisco, San Francisco, California.

Abstract

BACKGROUND:

Although timely treatment of sepsis improves outcomes, delays in administering evidence-based therapies are common.

PURPOSE:

To determine whether automated real-time electronic sepsis alerts can: (1) accurately identify sepsis and (2) improve process measures and outcomes.

DATA SOURCES:

We systematically searched MEDLINE, Embase, The Cochrane Library, and Cumulative Index to Nursing and Allied Health Literature from database inception through June 27, 2014.

STUDY SELECTION:

Included studies that empirically evaluated 1 or both of the prespecified objectives.

DATA EXTRACTION:

Two independent reviewers extracted data and assessed the risk of bias. Diagnostic accuracy of sepsis identification was measured by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and likelihood ratio (LR). Effectiveness was assessed by changes in sepsis care process measures and outcomes.

DATA SYNTHESIS:

Of 1293 citations, 8 studies met inclusion criteria, 5 for the identification of sepsis (n = 35,423) and 5 for the effectiveness of sepsis alerts (n = 6894). Though definition of sepsis alert thresholds varied, most included systemic inflammatory response syndrome criteria ± evidence of shock. Diagnostic accuracy varied greatly, with PPV ranging from 20.5% to 53.8%, NPV 76.5% to 99.7%, LR+ 1.2 to 145.8, and LR- 0.06 to 0.86. There was modest evidence for improvement in process measures (ie, antibiotic escalation), but only among patients in non-critical care settings; there were no corresponding improvements in mortality or length of stay. Minimal data were reported on potential harms due to false positive alerts.

CONCLUSIONS:

Automated sepsis alerts derived from electronic health data may improve care processes but tend to have poor PPV and do not improve mortality or length of stay.

PMID:
25758641
PMCID:
PMC4477829
DOI:
10.1002/jhm.2347
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Frontline Medical Communications Inc Icon for PubMed Central
Loading ...
Support Center