Format

Send to

Choose Destination
Trends Pharmacol Sci. 2015 Apr;36(4):226-35. doi: 10.1016/j.tips.2015.02.005. Epub 2015 Mar 7.

Epigenetic-related therapeutic challenges in cardiovascular disease.

Author information

1
Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Emanuele Gianturco 113, 80143 Naples, Italy.
2
Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Via Luigi De Crecchio 7, 80138 Naples, Italy.
3
Unità Operativa Complessa Division of Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy. Electronic address: vincenzo.grimaldi@policliniconapoli.it.
4
Unità Operativa Complessa Division of Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy.
5
Institute of Diagnostic and Nuclear Development (SDN), Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Emanuele Gianturco 113, 80143 Naples, Italy; Unità Operativa Complessa Division of Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Regional Reference Laboratory of Transplant Immunology (LIT), Azienda Ospedaliera Universitaria (AOU), Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy.

Abstract

Progress in human genetic and genomic research has led to the identification of genetic variants associated with specific cardiovascular diseases (CVDs), but the pathogenic mechanisms remain unclear. Recent studies have analyzed the involvement of epigenetic mechanisms such as DNA methylation and histone modifications in the development and progression of CVD. Preliminary work has investigated the correlations between DNA methylation, histone modifications, and RNA-based mechanisms with CVDs including atherosclerosis, heart failure (HF), myocardial infarction (MI), and cardiac hypertrophy. Remarkably, both in utero programming and postnatal hypercholesterolemia may affect the epigenetic signature in the human cardiovascular system, thereby providing novel early epigenetic-related pharmacological insights. Interestingly, some dietary compounds, including polyphenols, cocoa, and folic acid, can modulate DNA methylation status, whereas statins may promote epigenetic-based control in CVD prevention through histone modifications. We review recent findings on the epigenetic control of cardiovascular system and new challenges for therapeutic strategies in CVDs.

KEYWORDS:

atherosclerosis; cardiovascular disease; cardiovascular pharmacology; epigenetics; natural compounds; statins

PMID:
25758254
DOI:
10.1016/j.tips.2015.02.005
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center