Send to

Choose Destination
See comment in PubMed Commons below
Brain Res Mol Brain Res. 1989 Nov;6(2-3):187-96.

The role of Ca2+ channels of the L-type in neurotransmitter plasticity of cultured sympathetic neurons.

Author information

Laboratoire de Pharmacologie et de Toxicologie Fondamentales, CNRS, Toulouse, France.


We have studied the effects of Ca2+ antagonists and agonists on the development of choline acetyltransferase (ChAT), tyrosine hydroxylase (TOH) and acetylcholinesterase (AChE) in cultures of rat sympathetic neurons maintained for 6-9 days in low K+ (5 mM) or high K+ (35 mM) medium. Previous experiments have shown that high K+ medium increases TOH activity and TOH-mRNA level up to 3.5-fold and depresses the development of AChE, in particular of its asymmetric A12 form. Moreover, high K+ medium inhibits ChAT induction by 90% in muscle-conditioned medium (Raynaud et al., Dev. Biol., 119 (1987) 305-312; 121 (1987) 548-558). None of the Ca2+ antagonists tested affected the development of ChAT, TOH or AChE in low K+ medium. In high K+ medium, nitrendipine (3 microM) or fluspirilene (1 microM) fully restored ChAT induction by conditioned medium to the level observed in low K+ medium. Other drugs (1 microM) gave partial reversion: flunarizine greater than (+)-PN 200-110 greater than (-)-D-888 greater than cinnarizine = lidoflazine. On the other hand, ChAT induction was not restored by a calmodulin inhibitor, calmidazolium (1 microM). Fluspirilene, PN 200-110, and nitrendipine also totally abolished TOH induction by high K+ medium; fluspirilene (1 microM) suppressed the inhibitory effect of high K+ medium on AChE development and restored the development of A12 AChE. Conditioned medium also depresses AChE and blocks the development of A12 AChE (Swerts et al., Dev. Biol., 103 (1984) 230-234), but these effects were insensitive to fluspirilene. The Ca2+ agonist Bay K 8644 (1 microM) potentiated the effects of elevated K+ on both ChAT and TOH. The data suggest that the effects of long-term depolarization on ChAT, TOH and AChE are mediated by Ca2+ entry specifically through voltage-sensitive channels of the L-type. Our results on cultured sympathetic neurons raise the possibility that Ca2+ antagonists, which are widely used clinically, may affect the expression of neurotransmitter phenotypic traits in vivo and interfere with trans-synaptic induction of enzymes.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center