Format

Send to

Choose Destination
Nucleic Acids Res. 2015 Mar 31;43(6):3373-88. doi: 10.1093/nar/gkv173. Epub 2015 Mar 9.

Structural insight into the mechanism of stabilization of the 7SK small nuclear RNA by LARP7.

Author information

1
Department of Integrated Structural Biology, Centre for Integrative Biology (CBI), IGBMC (Institute of Genetics and of Molecular and Cellular Biology, 67404 Illkirch, France Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France Université de Strasbourg, 67000 Strasbourg, France.
2
Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France Key Laboratory of Brain Functional Genomics, East China Normal University (ECNU), 200241 Shanghai, PR China.
3
Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France.
4
SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France INRA-URBIA, 44316 Nantes, France.
5
Department of functional genomics, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), 75005 Paris, France CNRS UMR 8197, 75005 Paris, France INSERM U1024, 75005 Paris, France dock@biologie.ens.fr.

Abstract

The non-coding RNA 7SK is the scaffold for a small nuclear ribonucleoprotein (7SKsnRNP) which regulates the function of the positive transcription elongation factor P-TEFb in the control of RNA polymerase II elongation in metazoans. The La-related protein LARP7 is a component of the 7SKsnRNP required for stability and function of the RNA. To address the function of LARP7 we determined the crystal structure of its La module, which binds a stretch of uridines at the 3'-end of 7SK. The structure shows that the penultimate uridine is tethered by the two domains, the La-motif and the RNA-recognition motif (RRM1), and reveals that the RRM1 is significantly smaller and more exposed than in the La protein. Sequence analysis suggests that this impacts interaction with 7SK. Binding assays, footprinting and small-angle scattering experiments show that a second RRM domain located at the C-terminus binds the apical loop of the 3' hairpin of 7SK, while the N-terminal domains bind at its foot. Our results suggest that LARP7 uses both its N- and C-terminal domains to stabilize 7SK in a closed structure, which forms by joining conserved sequences at the 5'-end with the foot of the 3' hairpin and has thus functional implications.

PMID:
25753663
PMCID:
PMC4381077
DOI:
10.1093/nar/gkv173
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center