Format

Send to

Choose Destination
Endocrinology. 2015 Jun;156(6):1982-94. doi: 10.1210/en.2014-1666. Epub 2015 Mar 9.

Genome-Wide Analysis of ChREBP Binding Sites on Male Mouse Liver and White Adipose Chromatin.

Author information

1
Department of Medicine (N.P., B.C., M.I., L.C.), Baylor College of Medicine, Houston, Texas 77030; Clinical Molecular Pathology Laboratory (N.P., K.M., C.S.-L.), Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Laboratory for Endocrinology, Metabolism and Kidney Diseases (M.I.) RIKEN Center for Integrative Medical Sciences, Yokohama, Japan 230-0045; Division of Biostatistics (J.C., W.L.), Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030; and Molecular Medicine Program (K.M.), Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand.

Abstract

Glucose is an essential nutrient that directly regulates the expression of numerous genes in liver and adipose tissue. The carbohydrate response element-binding protein (ChREBP) links glucose as a signaling molecule to multiple glucose-dependent transcriptional regulatory pathways, particularly genes involved in glycolytic and lipogenic processes. In this study, we used chromatin immunoprecipitation followed by next-generation sequencing to identify specific ChREBP binding targets in liver and white adipose tissue. We found a large number of ChREBP binding sites, which are attributable to 5825 genes in the liver, 2418 genes in white adipose tissue, and 5919 genes in both tissues. The majority of these target genes were involved in known metabolic processes. Pathways in insulin signaling, the adherens junction, and cancers were among the top 5 pathways in both tissues. Motif analysis revealed a consensus sequence CAYGYGnnnnnCRCRTG that was commonly shared by ChREBP binding sites. Putative ChREBP binding sequences were enriched on promoters of genes involved in insulin signaling pathway, insulin resistance, and tumorigenesis.

PMID:
25751637
PMCID:
PMC4430618
DOI:
10.1210/en.2014-1666
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center