Format

Send to

Choose Destination
Ecol Evol. 2015 Feb;5(4):865-73. doi: 10.1002/ece3.1404. Epub 2015 Jan 23.

Metacommunity and phylogenetic structure determine wildlife and zoonotic infectious disease patterns in time and space.

Author information

1
Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México México, Distrito Federal, México.
2
Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria Zootecnia, Universidad Nacional Autónoma de México México, Distrito Federal, México ; UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR 5290 CNRS-IRD-UM1-UM2, Centre de Recherche IRD 34394, Montpellier Cedex 5, France ; Centre de Synthèse et d'Analyse sur la Biodiversité - CESAB 13857, Aix-en-Provence Cedex 3, France.
3
Biology Department, Texas State University San Marcos, Texas.
4
UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR 5290 CNRS-IRD-UM1-UM2, Centre de Recherche IRD 34394, Montpellier Cedex 5, France.
5
EcoHealth Alliance New York, New York.
6
Biodiversity and Molecular Ecology Department Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige Trento, Italy.
7
INRA, UR346 Epidémiologie Animale Saint Genès Champanelle, France.
8
Department of Environmental Science and Policy, George Mason University Fairfax, Virginia.
9
Muséum National d'histoireNaturelle, DIVERSITAS Paris, France.
10
Population Biology, Ecology and Evolution Program, Emory University Atlanta, Georgia.

Abstract

The potential for disease transmission at the interface of wildlife, domestic animals and humans has become a major concern for public health and conservation biology. Research in this subject is commonly conducted at local scales while the regional context is neglected. We argue that prevalence of infection at local and regional levels is influenced by three mechanisms occurring at the landscape level in a metacommunity context. First, (1) dispersal, colonization, and extinction of pathogens, reservoir or vector hosts, and nonreservoir hosts, may be due to stochastic and niche-based processes, thus determining distribution of all species, and then their potential interactions, across local communities (metacommunity structure). Second, (2) anthropogenic processes may drive environmental filtering of hosts, nonhosts, and pathogens. Finally, (3) phylogenetic diversity relative to reservoir or vector host(s), within and between local communities may facilitate pathogen persistence and circulation. Using a metacommunity approach, public heath scientists may better evaluate the factors that predispose certain times and places for the origin and emergence of infectious diseases. The multidisciplinary approach we describe fits within a comprehensive One Health and Ecohealth framework addressing zoonotic infectious disease outbreaks and their relationship to their hosts, other animals, humans, and the environment.

KEYWORDS:

Disease ecology; One Health; dispersal; evolution; metacommunity; phylogenetic structure; stochastic event

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center