Format

Send to

Choose Destination
Genomics Proteomics Bioinformatics. 2015 Feb;13(1):4-16. doi: 10.1016/j.gpb.2015.01.009. Epub 2015 Mar 2.

Nanopore-based fourth-generation DNA sequencing technology.

Author information

1
Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China.
2
Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 611731, China.
3
Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; MOE Key Laboratory of Weak-light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China.
4
Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address: dqwang@cigit.ac.cn.

Erratum in

  • Genomics Proteomics Bioinformatics. 2015 Dec;13(6):383.
  • Genomics Proteomics Bioinformatics. 2015 Jun;13(3):200-201.

Abstract

Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications.

KEYWORDS:

DNA sequencing; Nanopore; Single base; Single molecule

PMID:
25743089
PMCID:
PMC4411503
DOI:
10.1016/j.gpb.2015.01.009
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center